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ABSTRACT 

Following the transdisciplinarity trend in science, this study was design to presents a way 

in which mathematical functions can be used in molecular characterization. Thus, the 

selected working system is a graphene nanoribbon consisting in 25 fused benzene rings, 

divided in two sub-systems i.e. unit cell and hypercell. For the two selected sub-systems, 

first was determined their physico-chemical parameters, than the obtained values were 

computed using the Heavisade based Gradient function formula, leading to a new set of 
parameters which can also offers new information about the working system. 

 

Keywords: graphene nanoribbon, benzene, atomic gradient, wave equation, Heaviside 

(Gradient) function. 

1. INTRODUCTION 

Graphene has attracted a lot of attention in the last years due to the fact that exhibit 

extraordinary physical and mechanical properties, i.e. is considered stronger than steel, very 

flexible and light, having at the same time high thermal and electronic conductivities. In 

literature, graphene is known as a carbon allotrope with the shape of a bi-dimensional crystal 

with sp2 orbital hybridization and 0.34 nm thicknesses. In graphene, each carbon atom is 
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bonded with other three carbon atoms, resulting in a very stable hexagonal lattice (in order to 

form a chemical bond with graphene, the sp2 bond must be converted into a sp3 bond). A 

graphene sheet can be "cut" into thin nanoscale ribbons, thus being created structures with a 

finite number of benzene rings called graphene ribbons (GNR). Besides, graphene is also the 

basic structure for fullerenes, carbon nanotubes and graphite [1-5]. 

As the sixth element in the periodic table, carbon has six protons in the nucleus and six 

electrons, the latter filling the lowest three orbitals in the arrangement [1s]2[2s]2[2p]2; type s

orbitals are spherical and symmetrical, p  type orbitals are elongated along a linear axis. If 

the carbon atoms approach each other, the two electrons from the [1s]2 orbitals do not 

participate on the bond formation (they remain close to the nucleus), the ones involved in the 

chemical bonds being the outermost orbitals. Thus, different form of carbon can be constructed 

due to the fact that there are different ways in which the four electrons in the outer orbitals 

[2s]2[2p]2 can be divided between atoms. 

Figure 1: Grafene lattice with basic structural units; [4] 

 
 

The sp3 bond is tetrahedral (3D) and is formed when a carbon atom equally share its four 

electrons with four nearest carbon atoms (e.g. the crystal structure of the diamond). Electrons 

in carbon atoms can also combine with hydrogen atoms [4] and form sp2 or sp bonds (e.g. 2D 

planar molecules - benzene, or long one-dimensional chains - conductive polymers). 

In his work, Debdeep [4] presents the crystalline structure of graphene considering two 

nearest-neighbor carbon atoms as the smallest unit which can be translated over the entire 2D 

space of the graphene plane (Figure 1). The author states that the two carbon atoms (denoted 

by A and B) are not identical due to the fact that the electronic wave function associated with 

them can break the "mechanical" symmetry. The sp2 bond, characteristic of graphene, is 

denoted by pycpxbsasp 2
 with a, b, c - constants, and is formed when a carbon 

atom shares electrons with three of its nearest neighbors, leaving one electron free for each 

carbon atom [4]. The electrons energies composing the sp2 bonds constitute the so-called  

bands, which gives graphene its vibrational and structural properties (e.g. Young’s modulus, 

thermal conductivity, etc.), being also responsible for its perfectly flat nature. The electrons 

which do not participate in the chemical bond formation come from the zp orbitals and can 

move between the nearest neighboring carbon atoms with a hoop energy of eV0.3~0 , 
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having  delocalized wave functions [4]. Thus, the allowed energies of these electrons constitute 

the so called  bands. The delocalized electrons are responsible for the exceptional electrical 

conductivity of graphene, their allowed energies depending on their wavelength, following the 

rules of quantum mechanics. Moving forward, one will consider the de-Broglie relation, which 

states that the wavelength is inversely proportional to the momentum. Thus, the momentum is 

expressed by k , with  - the Planck's constant, and  /2k  with  - the wavelength. If 

one will consider the basis of two atoms, the wavefunctions of graphene electrons can be 

represented as "spinors", i.e. two components matrices of the form 
 

 




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



i

rik

exp
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 with 

yx ykxkk  and xy kk /tan   [4]. 

On the other hand, Green's function is widely used in electrodynamics and quantum field 

theory [6], especially for problems where the relevant differential operators are often difficult 

or impossible to solve exactly (but can be solved in a perturbative way using Green's functions). 

There are many definitions for Green’s function known in literature, depending on its 

representation domain and its application [7]. 

In his work, Rastegin [8] derive the Green’s function of the wave equation by considering 

that the non-homogeneous wave equation for a field described by a function of the scalar 

potential (r,t) can be written as following: 
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(1) 

with Q(r,t) - the function describing the source of action, with the physical meaning determined 

by the considered processes nature; the model is linear (i.e. Eq. (1)), and as a result, this 

equation allows overlapping solutions. 

Thus, for a source Q represented as the sum of two other sources, e.g. Q1 and Q2, with 

several solutions 1 and 2, known for each of them separately, a solution of the previous 

equation can be of the form: 

     trtrtr ,,, 21  

 

(2) 

Based on these considerations, the author [8] considers the Green function as a viable method 

for solving inhomogeneous linear models; in this case, the given source is represented in the 

form of some "elementary" sources superpositions with known solutions.  

More precisely, the inhomogeneous equation is considered as follow: 

 r 2

 

(3) 

with  r  - an abstract potential, and  r  - describes the sources distribution. Eq. (3) can be 

solved using the integral: 

      RdVRRrGr  ,

 

(4) 

whit  RrG , as the Green’s function with standard expression  
Rr

RrG
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
4

1
,  which 

depends only on Rr  .  
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Starting from these considerate, the author [8] proceeds in his study by deriving the Green 

function for the wave equation, starting from considering a material point which varies in time, 

located at the coordinate origin, of the form: 

     tqrtrQ ,

 

(5) 

as the source for the inhomogeneous wave equation Eq. (1).  

Thus, Eq. (1) with the source as Eq. (5) constitutes a new system with spherical symmetry, 

so the solutions should be represented as  tr, , with rr  . At the same time, the radial part 

of the Laplacian can be expressed as [8]: 
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(6) 

In the case of 0r , there is an auxiliary function    trrtrf ,,   which respects the 

homogeneous wave equation with a single spatial variable: 
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(7) 

According to d'Alembert's formula,  trf ,  represents the sum of two terms depending on 

ctr  , for which the solution can be written in the form      crtvcrtutrf //,  . 

After several calculations, for Eq. (1) with the source as Eq. (5) one will obtain [8]:  
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If the substitution    rtq   is made, will results the function:  
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The wave operator acting on the Eq. (9) gives    tr  , with  trg ,  as its fundamental 

solution. Moreover, because for 0t  the right member of Eq. (9) is equal to zero, one can 

explicitly add the Heaviside function as a factor. Thus, the basic Green function in infinite space 

without boundary is obtained by replacing r with Rr   and t with t  [8]. 

In another approach [9], the Green function g is considered as a solution of the wave 

equation with an impulsive source function  (i.e. the space-time impulse  is situated in the 

right member): 
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(10) 

where  is a positive constant. 

In practice, the equation for g can be solved with the aid of the spatial Fourier transform, 

denoted by F, defined as [9]: 

     



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Starting from the fact that the spatial Fourier transform for 
22 / tg   is of the form:  
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and considering the spatial Fourier transform for g2  as   gkg 22 F  and for  tr,  as 

            ttzyxFg  2F , one will obtain the spatial Fourier transform for 

Eq. (12) as [9]:  
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Due to the fact that in Eq. (12) there are no spatial variable, the partial derivative can be replaced 

by the total derivative, leading to the following ordinary differential equation: 

   tGk
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(14) 

Since the right member of the Eq. (14) is represented by delta function, G is considered the 

Green’s function for the ordinary differential equation, whose solutions can be determined by 

the Laplace transform method [9]. 

Thus, for  skGL , as the Laplace transform of  tkG , , i.e. 
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for the ordinary differential equation, its Laplace transform will be the algebraic equation 
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,


  as the solution [9]. 

At the same time, according to the table of the Laplace transform,  
vk

vkt
tkG

sin
,  , from 

which results that  the Green’s function for the Eq. (14) is the sinc (Cardinal sine) function. 

Based on these considerations, the author [9] states that the inverse Fourier spatial 

transform of  tkG ,  gives the Green function g for the 1D wave equation, of the form: 
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(17) 

for 0r  and 0t , with  as the Heaviside function [9]. 

Nevertheless, there are many fields where the Green’s function formalism was successfully 

used, such as statistical, nuclear, solid-state physics, and also in atomic and molecular physics 

[10]. Green’s function can be also used in transport calculation, by solving the problems of 

single-particle electronic transport, when the density functional Hamiltonian from the 

Schrodinger equation is used in order to describe the particle energetic [11]. 
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2. METHOD 

2.1. Atomic Cumulative Gradients Model 

For the present study, the working system consists in a graphene nanoribbon with 25 

benzene molecules (C70H22) in which one can notice two types of structures – subsystems which 

can be translated – the smallest, i.e. benzene, generically named unit cell, and a cluster of unit 

cells, i.e. coronene, generically named hypercell (Figure 2).  

Figure 2: Graphical representation of the studied system and its corresponding susb-
sistems in monobond and heterobond state. (a) Benzene. (b) Coronene 

 
 

The two subsystems form two types of chemical bonds - only with carbon atoms i.e. monobond, 

and with 1 and 2 hydrogen atoms respectively i.e. heterobond. The aim is to determine how 

sub-systems energy inside the global system is influenced by the type of bonds created between 

carbon atoms and hydrogen atoms. 

Figure 3: Optimized unit cell and hypercell (representation using Hyperchem). (a) 

Benzene. (b) Coronene 

 
In order to accurately describe the electronic configuration and the bonds between atoms 

for the C70H22 molecule it was used the Hyperchem 8.1 program, and geometry optimization 
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calculations were performed in order to determine its most stable configuration (i.e. in which 

net forces on each atom are reduced to zero); these calculations are made by adjusting atomic 

coordinates in steps. As a method of optimization, PM3 semi-empirical method was selected, 

which describes the electron properties of atoms and molecules by solving the Schrödinger 

equation with certain approximations. In Hyperchem program, the molecule in study reaches a 

stable conformation due to the fact that the molecular geometry is altered by energy 

minimization, leading to lowering the system energy. The minimization progresses by 

searching the molecular structure in which the energy is not affected by infinitesimal changes 

in geometry, in other words, the derivative of the energy with respect to all Cartesian 

coordinates (i.e. the gradient) has a value near zero. 

2.2. Benzene and Coronene Atoms-in-Bonding Gradients 

Single point calculations were performed on the optimized system, in order to determine 

the gradient and the total energy for the working system; for this type of calculations, the input 

molecular structure will show which are the coordinates for a stationary point on the surface of 

the potential energy. In HyperChem program, the gradient represents the energy rate of change 

(first derivative) for a molecular system, defined as a function of atomic positions; if its value 

is very close to zero than the system configuration has minimum energy. 

 Benzene characterization 

From the results obtained with single point, the values representing the atomic gradients 

for both x and y coordinates were selected (see Table 1), for the specific carbon atoms form 

the unit cell in monobond state (i.e. C22, C20, C19, C4 C6, C23) and heterobond state respectively 

(i.e. C10, C13, C12, C11, C8, C9).   

Table 1: Atomic gradients for the unit cell obtianed with Hyperchem 

BENZENE 

Monobond state Heterobond state 

Carbon 

atom 

Atomic gradients 

(kcal/mol/Anstrom) 
Carbon 

atom 

Atomic gradients 

(kcal/mol/Anstrom) 

x y x y 

C22 0.03867 -0.01046 C10 -0.02062 0.02395 

C20 -0.03495 0.01800 C13 0.03867 0.01046 

C19 -0.04216 -0.01900 C12 0.04206 -0.00817 

C4 0.04519 0.01768 C11 -0.04225 0.00070 

C6 -0.02502 0.02361 C8 0.03036 -0.02978 

C23 -0.02062 -0.02395 C9 -0.01040 0.03250 

 

 Coronene characterization 
The molecular characterization of the hypercell (in monobond and heterobond states) was 

made in the same way as for unit cells, the atomic gradients for both x and y for the specific 

carbon atoms being presented in Table 2. 
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Table 2: Atomic gradients for the hypercel obtianed with Hyperchem 

CORONENE 

Monobond state Heterobond state 

Carbon 

atom 

Atomic gradients 

(kcal/mol/Anstrom) 
Carbon 

atom 

Atomic gradients 

(kcal/mol/Anstrom) 

x y x y 

C22 0.03867 -0.01046 C19 -0.04216 -0.01900 

C20 -0.03495 0.01800 C18 0.01637 -0.02733 

C19 -0.04216 -0.01900 C17 0.01637 0.02733 

C4 0.04519 0.01768 C16 -0.04216 0.01900 

C6 -0.02502 0.02361 C3 0.04519 -0.01768 

C23 -0.02062 -0.02395 C4 0.04519 0.01768 

C56 0.01424 0.02172 C52 0.01455 -0.02717 

C55 0.01024 0.02590 C54 -0.03320 -0.00554 

C52 0.01455 -0.02717 C48 -0.03320 0.00554 

C18 0.01637 -0.02733 C47 0.01455 0.02717 

C54 -0.03320 -0.00554 C51 0.03908 0.00686 

C48 -0.03320 0.00554 C61 0.02427 -0.00592 

C47 0.01455 0.02717 C60 -0.02350 -0.00166 

C17 0.01637 0.02733 C46 0.01024 -0.02590 

C46 0.01024 -0.02590 C59 -0.01654 0.00363 

C44 0.01424 -0.02172 C45 0.00631 0.00374 

C15 -0.03495 -0.01800 C43 0.01519 0.02315 

C16 -0.04216 0.01900 C44 0.01424 -0.02172 

C13 0.03867 0.01046 C14 -0.03637 0.00379 

C10 -0.02062 0.02395 C12 0.04206 -0.00817 

C2 -0.02502 -0.02361 C13 0.03867 0.01046 

C3 0.04519 -0.01768 C15 -0.03495 -0.01800 

C1 -0.00955 -0.04224 C10 -0.02062 0.02395 

C5 -0.00955 0.04224 C2 -0.02502 -0.02361 

 

The atomic gradient values obtained for the selected carbon atoms of unit cell and hypercell 

(in mono/hetero-bond) were used as input values for calculating the Gradient function, using 

its algorithm for 1D wave equation from Wolfram Mathematica 11.3 program (see Figure 4). 

Figure 4: Algorithm for Gradient function for 1D form Wolfram Mathematica 11.3 
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3. RESULTS AND DISCUSSIONS 

The Heaviside based Gradient function values obtained with Mathematica algorithm for 

each carbon atom from the unit cell and hypercell are presented in Table 3 and Table 4, and 

their distribution over the origin is presented in Figure 5 (for benzene) and Figure 6 (for 

coronene). The total Gradient function was calculated as a sum of the individual values for both 

cases in each type of bonding. 

 Case 1 - Benzene 

For the unit cell, the results show a difference in the number of positive and negative values 

between the two bonding states. In monobond state, the negative and positive results are equally 

distributed over the origin, i.e. the Gradient function values obtained for C22, C19, and C23 has 

negative sign, while the ones for the other three carbon atoms has positive values. However, 

the positive values are slighty higher than the negative ones; as a result, the total Gradient 

funtion value has positive sign and is more close to 0.  

On the other hand, in heterobond, only two negative values were obtained, i.e. for C12 and 

C8, the ones for the other four carbon atoms being with positive sign. For this case, the positive 

values are even higher than in the previous case, compared to the negative ones; as a result, the 

total Gradient funtion value is also positive but more close to 0.1. 

Table 3: Calculated values of Gradient function for benzen 

BENZEN   

Monobond state Heterobond state 

C
a
rb

o
n
 a

to
m

 

Gradient function 

C
a
rb

o
n
 a

to
m

 

Gradient function 

C22 -0.0109192 C10 0.0231693 

C20 0.0172089 C13 0.0108098 

C19 -0.0183795 C12 -0.008547 

C4 0.0183227 C11 0.00067018 

C6 0.0227406 C8 -0.0311275 

C23 -0.023743 C9 0.0316339 

Total Gradient function 

0.0052305 0.02660868 

 

Figure 5: Gradient function distribution for benzen in monobond vs. heterobond state 
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 Case 2 - Coronene 
For the hypercell (i.e. coronene) there is also a difference in the number of positive and 

negative values between the two bonding states. In monobond, the equal distribution between 

the negative and the positive results is maintained, same as in benzene monobond i.e. the 

Gradient function values obtained for C22, C19, C23, C52, C18, C54, C46, C44, C15, C2, C3 and C1 

has negative sign, while the ones for the other twelve carbon atoms has positive value. In this 

case, the positive values are slighty smaller than the negative ones; as a result, even if the total 

Gradient funtion value has negative sign, is still more close to 0. 

Table 4: Calculated values of Gradient function for coronene 

CORONENE  

Monobond state Heterobond state 

C
a
rb

o
n
 a

to
m

 

Gradient function 

C
a
rb

o
n
 a

to
m

 

Gradient function 

C22 -0.0109192 C19 -0.0183795 

C20 0.0172089 C18 -0.0281509 

C19 -0.0183795 C17 0.0274039 

C4 0.0183227 C16 0.0180185 

C6 0.0227406 C3 -0.0186353 

C23 -0.023743 C4 0.0183227 

C56 0.0217934 C52 -0.0279344 

C55 0.0258298 C54 -0.00537142 

C52 -0.0279344 C48 0.00534073 

C18 -0.0281509 C47 0.0271962 

C54 -0.00537142 C51 0.00710456 

C48 0.00534073 C61 -0.0060812 

C47 0.0271962 C60 -0.00162237 

C17 0.0274039 C46 -0.0265006 

C46 -0.0265006 C59 0.00356337 

C44 -0.0222652 C45 0.00375661 

C15 -0.0175329 C43 0.00375661 

C16 0.0180185 C44 -0.0222652 

C13 0.0108098 C14 0.00364498 

C10 0.0231693 C12 -0.008547 

C2 -0.023298 C13 0.0108098 

C3 -0.0186353 C15 -0.0175329 

C1 -0.0427287 C10 0.0231693 

C5 0.0409445 C2 -0.023298 

Global Gradient function 

-0.00668079 -0.05223153 

For the second case, in heterobond, the equality between the number of positive and 

negative values is also maintained, i.e. the Gradient function values obtained for C19, C18, 
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C3, C52, C54, C61, C60, C46, C44, C12, C15 and C2 has negative sign, the ones for the other 

twelve carbon atoms being with positive sign. However, the positive values are even 

smaller than the negative ones, compaerd to the ones from monobond, this time, the total 
Gradient function value being with negative sign and more close to -0.1. 

Figure 6: Gradient function distribution for coronen in monobond vs. heterobond state 

 

A possible explanation for the difference between the total Gradient function of the 

benzene bonding states can be the fact that the bond between hydrogen and carbon is stronger 

than the bond between carbon and carbon. At the same time, the positive value of the total 

Gradient function can indicate that is more probable for the benzene ring (as a subsystem in the 

carbon nanoribbon) to became involved in bonds formation with other molecules.  

There is also a difference between the two states of coronene, i.e. the global Gradient 

function for coronene in monobond state is higher than the global Gradient function for 

coronene in heterobond state, which can be explained by the fact that systems with multiple 

benzene rings are more stable when bond with other carbon atoms than in the case when bond 

with hydrogen. At the same time, the negative value of the total Gradient function (different 

form the positive one obtained for benzene) can also be regarded as a marker of a more stable 

configuration for coronene as a sub-system of the nanoribbon. 

4. CONCLUSION 

Nowadays, there is still an increased interest in studding graphene due to its applicability 

in many domains of interest.  Recent studies presents graphene as an active material [12] when 

is used in energy storage mechanisms: it can capture ions (e.g. Na+ or Li+ ions in ion-metal 

batteries), can store electrostatic charge (e.g. in double-layer electrochemical capacitors) or it 

can act as a catalyst (e.g. in metal-air batteries). At the same time, graphene is considered a 

suitable alternative as an anodic material [13] because it is chemically stable, can exchange 

electrons easily and has high electrical conductivity, which causes a lower resistive heat inside 

the electrode (batteries can operate at lower temperatures, being safer). In this context, it is well 

known in the scientific community that the computational methods are seen as good alternatives 

to the classical experimental methods, being faster, less expensive and more environmentally 

friendly, especially when combined with mathematical formalisms. Starting from these 
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considerations, Gradient function formalism can be seen as a very useful mathematical model 

in studies of chemistry and physics due to the fact that depends only on the differential operator 

and the boundary conditions, meaning that it can be easily solved once these conditions are 

fulfilled. Further connections between the actual Gradient function assessment and the atoms-

in-nanostructures Green’s functions distribution are to be next studied. 
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