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ABSTRACT 

Networks can be interconnected via different types of links between a set of nodes, 
forming multiplex networks. The main challenge for these networks is represented by the 
mechanisms of control. Control can be applied in a rigid manner, a mathematical one, 
considering the input data and the output. Complex networks can be confronted with 
errors of function, but many of them show a certain degree of tolerance against errors. 
Theory of networks helps us understand a large variety of aspects, e.g. the most complex 
biological processes which allow to understand the mechanisms of diseases and to 
elaborate novel therapy strategies, up to the supreme concept of personalized medicine. 
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1. INTRODUCTION 

Scientific community is challenged in recent years with an increasing amount of research 

data in all domains. In certain situations, essential information is difficult to be quantified 

and, sometimes, to be controlled. Thus, a new concept has emerged, respectively that off 

topic networks that could explain conceptual relationships [1]. 

Networks can be interconnected via different types of links between a set of nodes, 

forming multiplex networks which comprise a very high number of complex social, 

biological and transportation networks [2,3]. 

The main challenge for these networks is represented by the mechanisms of control. 

Control can be applied in a rigid manner, a mathematical one, considering the input data and 

the output, measuring the feedback as an expression of the obtained and the desired output 
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[4]. A complex network is comprised of series of subsystems, but, interestingly, each 

subsystem has its own dynamics, but in most often situations, in between subsystems, their 

dynamics operate among a comparable time scale. The third essential feature regarding 

complex networks is that an external controller describes only a single direct interaction with 

only one subsystem [4]. In their work, Posfai et al. (2016), studied the controllability of 

coupled complex dynamical systems [5]. 

 

MULTIPLEX NETWORKS 

For multiplex and multi-time-scale networks, there is necessary to find the minimum 

number of inputs Ni and to extend the definition of the dynamic graph. The authors 

established that it is possible to obtain full control in the case of one-to-one coupling between 

layer I and II with at most N independent inputs, normalizing Ni by N (e.g., ni = Ni/N). The 

process of studying multiplex networks revealed that there is always the possibility not to 

consider nontrivial phenomena, conducting to the idea that without understanding and 

describing every effect, it will be quite impossible to describe a system in its entire features. 

Same authors established that dense networks characterized by homogeneous degree of 

distribution require less input data [5].  

 

Figure 1: Mechanisms of control in case of a two-layer multiplex network (adapted from 

Posfai et al. 2016 [5]) 

 
 

In Fig. 1 (adapted from Posfai et al. 2016) we describe the function of control in the case 

of multiplex networks. (a) shows the representation of a two-layer network. (b) – (d) 

illustrates the evolution of the system from t0= 0 to t1 = max(τI, τII). There is an efficient 

control of the system if all nodes at t1 (blue) are connected to nodes at t0 or to nodes that are 

considered control signals (green) going through disjoint paths (red). (c) analyses the 

possibility in which layer I is faster than layer II(τI =1, τII =2), the number of inputs is reduced 

Ni = 1. (d) layer II is faster than layer I, requiring longer control pathways, Ni = 3 [5]. 
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To have a successful controlling process, knowing its position in the state space is 

necessary. This can be accomplished if the state of each component is assessed separately. “A 

system is said to be observable if it is possible to recover the state of the whole system from 

the measured inputs and outputs” [4]. 

Following factors and their inter-relations compose de observability problem: the outputs 

y(t), the state vector x(t), the inputs u(t). They determine the initial state of the system x(0). If 

one of these factors cannot be determined, than the controller has not the possibility to play its 

role interfering in the feedback response. To establish if a variable provides full observability 

of small dynamical systems, a graphical approach (GA) can be used. This tool is essential in 

the case of large network systems because it translates observability to a characteristic of the 

static graph of the inference diagram with large applicability in chemistry, biology, 

biochemistry, ecology. To notice that for linear systems, full observability is not 

accomplished using the minimum sensor set predicted by the graphical approach [6]. 

Real networks are characterized by growth and preferential attachment. In a network, the 

elements of the system are vertices, and the edges are represented by the interactions between 

the vertices. Large networks (e.g., human body, the World Wide Web, etc.) consist of a 

complex topology. They can be assessed using the random graph theory of Erdös and Rényi 

(ER), a method that is not always feasible in real world because of lack of data in extremely 

large networks. These kinds of networks can organize themselves into a scale-free state 

because they fail to incorporate growth and preferential attachment. But, when these two are 

present, they are responsible for the power-law scaling met in networks in real life. The scale-

invariant state represents a general feature of a large variety of complex networks, with large 

applicability in science [6,7]. 

 

2. MODELING INTERMEZZO 

In the random graph ER model [8], one starts with N vertices, connecting each pair of 

nodes with the probability p. In this model, the probability that a vertex has k edges is 

described by Poisson’s distribution equation P(k)=e
-λ 

λ
k
 /k! [7]. 

 

� = � �� − 1� � 	
(1 − 	)���
 

 

Complex networks, in actual terms, can be classified as follows [9]: 

- Small worlds: despite of the large size of a specific network, there are quite short 

pathways between two specific vertices (e.g., chemicals in a cell are commonly 

separated by three reactions); 

- Clustering: in a community, there are circles of friends, where everyone knows 

everyone; the clustering coefficient quantifies the tendency of clustering; 

- Degree distribution: expresses the fact that in a network, not all nodes have the 

same number of edges. 

The Watts and Strogatz model [10] uses N vertices placed on a one-dimensional lattice. 

Connections are as follows: each vertex is connected to the two nearest vertices and next-

nearest neighbors. Each edge is connected with a p probability to a randomly chosen vertex. 
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In this way, distances between vertices suffer a reduction process, being an example of small-

world network. [11,12]. 

3. APPLICATIONS 

One of the most important application of small-world type of networks is the human 

brain, because of following reasons [13]: 

- Complexity of brain is translated into space and temporal connections; 

- Brain can be drawn as a typical small-world topology: it is composed by both 

high-clustering modular processes, and short path length integrated processes; 

- Brain has a typical behavior: it is cost-effective. 

In their study, Felleman and Van Essen [14] have put together a connectivity matrix at 

the level of visual cortex of macaque monkey, comprising 305 axonal connections between 

32 areas in the visual cortex. Experimental data have appeared after studying the visual cortex 

network in macaque monkeys and cortical networks in cats, after injecting each separately 

with uncorrelated noise in a computational model. This model proved to be dynamic and 

unweighted and undirected graphs were elaborated. The results demonstrated that brain, 

generally, acts as a small-world network with following characteristics: high complexity, 

dense local clusters of connections, sparse interconnections between clusters, abundance of 

reciprocal connections and cycles, minimal wiring, and global and local efficiency [15-17]. 

Efficiency of informational transfer in regular and complex networks [15]. Immediat 

applicability of these principles would be in understanding the behavior of neurodegenerative 

cognitive diseases, such as Alzheimer’s. In this particular condition, analyzing the cortical 

network using electroencephalography, it was established that the cognitive decline is 

associated with an increased path length and/or reduced global effectiveness [18]. 

 

A KEY ROLE IN BIO-MEDICAL SCIENCES 

The hierarchically organized networks of the brain are in their majority developed in 

early period of intrauterine life, but its definitive organization takes place in childhood and 

adolescence. Further research has to clarify the proportion in which genetic factors and 

environmental ones determine functional connectivity of the brain throughout adolescence. 

Resting-state networks showed a decrease with age of the degree of functional connections 

between them, while it increases within them with age. In the usual, default state of brain 

network, functional connectivity is stronger in girls. The study of Teeuw et al. (2019) showed 

that up to 53% heritability explains the variation in functional connectivity within and 

between resting-state networks, and environmental factors explained up to 33% of this 

variation [19].  

Complex networks can be confronted with errors of function, but many of them show a 

certain degree of tolerance against errors, namely inhomogeneously wired networks identified 

as scale-free networks (e.g., the Internet, the World-Wide Web, social networks, cells). Their 

nodes communicate despite a high rate of failures [20]. 

The main disadvantage of this kind of networks is that they are in a quite increased rate 

vulnerable to attacks when one or more nodes can be removed leading to loss of connectivity.  

Complex networks can be classified in two types, according to their connectivity 

distribution P(k), determining the probability that a certain node of the network is connected 
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to other k nodes: i) quite homogenous networks, where each node has approximately the same 

number of links, k = (k); the most known are the random graph model of Erdös and Rényi, as 

well as the small-world model of Watts and Strogatz; ii) inhomogeneous networks (scale-

free), where P(k)  ranks as power-law, free of a characteristic scale.  

In their work, Albert et al. (2000), the authors conclude that scale-free networks are 

highly tolerant to random failures, explaining why large complex networks won’t completely 

shut down when some connections don’t work properly or at all [20]. 

Network theories have large applicability in real-life systems. Proteins play key-roles in 

in vivo systems: catalysts, signaling molecules, or structural molecules. Random mutations in 

microorganisms doesn’t lead to a total change of the topology of the proteins’ network. But, 

when most of the connected proteins are erased using different computational techniques, a 

rapid increase of the network diameter is observed. Proteins that express a large number of 

connections playing a central role in the construction of the network are essential in contrast 

to proteins that have only few connections to other proteins in the network. This fact allows to 

conclude that proteins, beyond their biochemical role, express various degrees of robustness 

against mutations based on the topology of the network, on the interactions between the 

components [21].  

Yeast proteins express the tendency to high degree networks [22]. In humans, in tissues 

affected by cancer, up-regulated genes are highly connected and central, being essential for 

chaotic and increased cell proliferation, and expressing topological features of essential genes 

[23,24].  

In another work, a study upon 346 genes with cancer development determinism in 

humans showed that comprising proteins were implied in interactions with at list double of 

protein partners than non-cancer proteins [25]. 

Also, it was established that mutated genes that determine certain diseases are 

coexpressed in specific tisuues, their proteins of synthesis interact among them, and express 

functions according to the Gene Ontology hierarchy [26]. 

The aspect of interoperability between networks plays a key role in bio-medical sciences. 

Intracellular networks are translated in graph models for better integration of genomics, 

structural biology and imaging. In this manner, especially qualitative data of cellular 

regulation is considered, but established models are reliable and can predict outcomes in 

terms of disease development and therapy and also can identify new disease biomarkers and 

novel drug targets [27,28]. Such a multi-layer network is shown in Fig. 2. 

It is clear that living systems are complex networks and there is a huge amount of 

information deriving from cellular activity. The approach to understand this big small world 

has to provide comprehensive abstractions, algorithms and analytical techniques. The main 

problems to be answered are [29]:  

- Rebuilding and inference of cellular complex networks; 

- Identifying of common patterns in cellular networks and building blocks of cellular 

pathways; 

- Identifying metabolic pathways which define cellular pathways, both in healthy 

cells and in diseased cells. 

Further, protein-protein interactions define a number of physical combinations of them, 

but only a subset of proteins interacts in a particular cell or tissue [30]. After examining 31 

human tissues quantifying the whole genome expression, there were identified a number of 

2374 genes that are ubiquitously expressed being named “housekeeping” genes. An important 
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role in cellular metabolism and life cycle is given by tissue-specific proteins, with fewer 

physical interactions [31,32]. 

 

Figure 2. Schematic representation of the multi-layer aspect of networks 

 
 

Tissue-specific proteins form sub-networks reported to “housekeeping” genes, being 

more 2 fragmented, but of much more importance for biological processes [33]. In Table 1 is 

summarized the quantification of tissue-specific proteins in human tissues [34]. 

 

Table 1. Tissue-specific proteins organized as networks in human tissue [34] 

Tissue/Cell Number of 

proteins 

Percent of 

proteins(%) 

Number of 

interactions 

Percent of 

interactions(%) 

Fetal Heart 12,368 91.55 101,864 58.93 

Fetal Liver 12,055 89.24 92,323 53.41 

Fetal Gut 12,522 92.69 108,548 62.80 

Fetal Ovary 12,096 89.54 93,672 54.19 

Fetal Testis 12,365 91.53 104,401 60.40 
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Table 1. Tissue-specific proteins organized as networks in human tissue [34] 

Tissue/Cell Number of 

proteins 

Percent of 

proteins(%) 

Number of 

interactions 

Percent of 

interactions(%) 

Fetal Brain 11,972 88.62 86,524 50.06 

Adult Frontal 

Cortex 

12,374 91.60 101,715 58.85 

Adult Spinal 

Cord 

12,081 89.43 92,704 53.63 

Adult Retina 12,506 92.58 108,809 62.95 

Adult Heart 12,151 89.95 93,794 54.26 

Adult Liver 12,391 91.72 104,517 60.47 

Adult Ovary 11,962 88.55 86,563 50.08 

Adult Testis 12,376 91.61 101,865 58.93 

Adult Lung 12,106 89.61 92,324 53.41 

Adult Adrenal 12,506 92.58 108,549 62.80 

Adult 

Gallbladder 

12,157 89.99 93,673 54.19 

Adult Pancreas 12,389 91.71 104,402 60.40 

Adult Kidney 11,965 88.57 86,525 50.06 

Adult 

Esophagus 

12,361 91.50 101,716 58.85 

Adult Colon 12,112 89.66 92,705 53.63 

Adult Rectum 12,551 92.91 108,810 62.95 

Adult Urinary 

Bladder 

12,138 89.85 93,795 54.26 

Adult Prostate 12,381 91.65 104,518 60.47 

Placenta 11,894 88.05 86,564 50.08 

B Cells 12,396 91.76 101,865 58.93 

CD4 Cells 12,109 89.64 92,325 53.41 

CD8 Cells 12,534 92.78 108,550 62.80 

NK Cells 12,162 90.03 93,674 54.19 

Monocytes 12,379 91.64 104,403 60.40 

Platelets 11,931 88.32 86,525 50.06 

Static network 13,509 100 172,848 100 
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PREDICTION MODELS 

The World-Wide Web still remains a complex network with a low rate of control. 

Growth is irregular and non-linear. Documents and links are dynamic. This is why in this 

particular case it is impossible to catalogue all the nodes and edges. The World-Wide Web is 

subjected to the principle of power-law, documents with increased number of links and 

connections have a very significant high probability to be found, in relation with extremely 

well connected pages. Distribution of links is of scale-free nature. So, the understanding of 

development of web implies other models than the random graph models [35]. World-Wide 

Web (W
3
) as a complex network can be defined through its “obvious” characteristics: 

ubiquity, interactivity, it is a hyperlinked but decentralized structure, with a multimedia 

format [36]. 

In vivo cells can be imagined as a complex network similarly to the web. Modern 

research has to be focused on understanding the intercellular interactions which determine the 

structure and function of a living tissue. This is the key for further development of drug 

design techniques and for personalized therapies in the large panel of diseases. Main 

interactions are protein-protein interactions, metabolic, signaling and transcription-regulatory 

interactions and networks [37]. Directed networks are those where the interaction between 

any two nodes has a very well established direction, while in undirected networks there is no 

established direction of the links.  

In a recent paper, the authors had a new approach to build a directed network, starting 

from multivariate time series, on the principle of information theoretic reduction of linear 

auto-regressive models. The method comprises three distinctive steps: 1) each time series is a 

basic and distinct node; 2) models of multivariate reduced auto-regressive type are built; 3) 

direct links connect the nodes. Using this model, it is possible to analyze and to predict 

meteorological data, and, in medicine, it reconstructs and explains the 

electroencephalographic data, obtaining less links than traditional methods, excluding thus the 

redundant links [38].   

To predict links means to consider those missing links, but also to assess new links in a 

complex network. There are three major link prediction metrics: 1) neighbor based; 2) path 

based; 3) pattern based [39]. 

These previous algorithms generally address to undirected networks. Table 2 shows 

acknowledged link prediction models. 

 

Table 2. Acknowledged link prediction models [39] 

Adamic -Adar  (AA) 

 
Common Neighbors  
Hup Depresed Index (HD) 

 
Hup Promoted Index  

 
Jaccard’s Coefficient (JC) 
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Table 2. Acknowledged link prediction models [39] 

Leicht – Holme – Newman Index (LHN) 

 
Resource Allocation Index (RA) 

 
Salton Index (SA) 

 
Sǿrensen Index (SO) 

 
 

Starting from the Triadic Closeness (TC) (a metric based on frequency of sub-graphs in 

the network), a new extended metric based network was created and called TCX. The 

evaluation of TCX metric effectiveness was measured comparing it to TC metrics, TCX 

metrics obtaining the highest link prediction performance [39]. 

The well known h index used to measure academic performance of scientists has found 

its applicability in optimizing networks’ functionality because it raises no difficulties in its 

calculation, it is not based on the global network information and it is difficult to be 

manipulated. So, in a network, “the n-order h-index of a node is defined to be the maximum 

value h such that there exists at least h neighbors whose (n−1)-order h-index is no less than h, 

where n ≥ 1” [40,41]. 

 

METABOLIC NETWORKS 

Scale-free networks are common in living cells, such as genetic regulatory networks, 

where the nodes are the genes themselves, and links are represented by the expression 

correlations or by the protein domain interactions. It is interesting that transcription regulatory 

networks may be also mixed scale-free and exponential. So, most transcription factors 

regulate only a few genes, and a few general transcription factors show interactions with a lot 

of genes. Despite the fact that the scale-free networks have a power law distribution degree, 

all cellular networks present hubs (nodes with the largest number of links) as a general 

characteristic. These features can be reduced to two basic mechanisms: growth and 

preferential attachment. A complete characterization of cellular networks implies to specify 

the intensity or strength of an interaction, as well as the time frame interactions evolve. 

Modules are groups of molecules with common features, like physical and/or functional 

properties. Protein-protein or protein-RNA are complex physical modules that determine 

specific biological functions, like nucleic acid synthesis or protein degradation. Motifs are 

elementary units of cellular networks [37,42]. 

Metabolic networks are of free-scale type, with some highly connected nodes that are 

implied in a large number of metabolic reactions. These hubs have a large number of links 

and they have the ability to join all the substrates into a single web where no fully separated 

modules can be found. There is an apparent non-concordance within metabolic networks. 

Calculations have demonstrated a high size-independent clustering coefficient (pleading for 

modularity), while the power law degree distribution of metabolic networks is in favor of the 

scale-free model, consistently excluding a modular topology. The problem can be solved 
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creating a hierarchical network, reconciling within a single framework all the characteristics 

of a metabolic network [43,44]. 

As mentioned above, random networks have been characterized using the Erdös and 

Rényi (ER) model, where the network is reduced to a set of nodes connected pairwise with 

equal probability. Watts and Strogatz stated that an important issue to define a network is to 

describe the local clustering aspect. In both models, the probability P(k) for a node to be 

connected to other k nodes is bounded, decaying exponentially for high values of k. Free-scale 

networks are based on two mechanisms that are determinant for the final topology: i) new 

nodes are added in order to develop a network, in order to connect to pre-existent nodes; ii) a 

new node will link with high probability to a node with a large number of connections. An 

extended network model presumes the addition of new nodes, new links, and the rewiring of 

links. Universality is a concept that declares that in a complex network exponents are in no 

relation to microscopic aspects of the model. In scale-free networks, universality does not 

exist because scaling exponents are in a continuous dependence to the networks’ parameters 

[45]. 

At a first look, functional networks are needed in real life. But, there are situations when 

one would prefer a broken, not functional network. This would be the case of pathogen 

agents, where effective treatment of the infection means to interfere and to break the 

molecular network of the causing microorganism. This process is based on identifying in the 

network sets of nodes defined as influencers. One would prefer to remove hubs, more easier 

to be located. To identify those sets of nodes that, through their deletion would produce the 

most destruction is a problem of non-deterministic polynomial-time hard type. For this, it is 

necessary to identify the sets of nodes with lowest energy. Further, it is necessary to define 

the collective influence, which is the product of the node’s reduced degree (the number of its 

links minus one) and the sum of the reduced degrees of the nodes. The algorithm derived 

from the collective influence principle removes successively those nodes with the highest 

collective influence, at each cycle being calculated for the remaining nodes those sets with the 

highest collective influence. This method is feasible because a well defined and constant part 

of the network is removed at each step of the computation [46, 47]. Considering the Internet, 

it is not expected and it didn’t happen to break down completely when random failures of 

routers or links appear. But, in a very-well targeted attack, a significant dysfunction of the 

network could appear because certain hubs of the network undergo the specific attack. Those 

networks where all the nodes are connected to a central node (the hub-and-spoke network) are 

more flexible in case of random failures. Only when the central hub is removed, such 

networks shut down completely [48]. 

Computers are seen as complex networks where viruses are aggressors. Viruses’ 

penetrability isn’t always a matter of intensity of infectiousness. Even those so-called weak 

viruses can spread and persist within the network. Hubs are highly connected and at least one 

might be infected by a single corrupted node. Further, the infection is spread to a large 

number of nodes implying also other hubs that “help” the virus to be wide-spread along the 

network [48]. Human viruses have a model of spreading respecting scale-free social 

networks. Immunization against viral diseases should target the hubs (the most connected 

individuals) in order to be effective [48]. The dynamics of such networks considers the 

temporal aspect, the range of time interactions take place. 
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NETWORK MEDICINE 

Nowadays, science and research has reached the borders of inter- and multidisciplinarity. 

So, physics is connected to biology, chemistry, biochemistry, medicine, IT, etc., determining 

a large complex network. Complexity and networks go hand in hand, complexity being 

anchored both in the architecture of a system, and in the dynamical nature of the processes 

that emerge in a system [49]. The collaboration among scientists and researchers in various 

disciplines was examined: it was found that the obtained network has a scale-free pattern. It is 

worth mentioning that Paul Erdös represents one of the most large hubs in mathematics 

community: he wrote more than 1400 papers with at least 500 co-authors [50]. 

DNA is the expression of biological complexity. At cellular level there is a complex 

network with extremely well defined levels of organization: the cell’s genome, transcriptome, 

proteome, metabolome. All these groups interact within large networks, but each level 

organizes itself as a network (e.g., the proteome is a protein interaction network) [51]. 

Obesity has clear genetic determinism. It is extremely interesting that there are proofs 

that support the idea that communities have also an important influence on obesity onset. In 

the Framingham Heart Study, investigators built social networks focused on the study 

participants, comprising their closest friends, neighbors, family members. In a group of two 

friends, if one was or became obese, the other one had a chance to become obese of 171% 

[52]. 

To understand diseases, it is necessary to develop cellular maps with implied 

pathophysiological interactions, identifying disrupted pathways. Modern diagnosis comprises 

the description of the chain of changes, from identifying the primary disease-causing gene 

(with the afferent mutation(s)), to clinical expression. In this way, therapy can be targeted and 

personalized. The mutated gene determines synthesis of modified proteins and facilitates the 

appearance of an intermediate subclinical and clinical response: inflammation, thrombosis or 

hemorrhage, aberrant cell proliferation, necrosis, apoptosis. Beyond genetic factors, 

environmental factors can intervene on the determinism of a disease, modulating gene 

expression. So, it is important to integrate the interactions between genome, proteome, 

environment, pathophenome, that take place on a cellular network basis. The main goals of 

this are to understand the development of a disease, to predict outcomes and to elaborate 

proper therapy strategies [53]. 

Novel therapy strategies are based on the previous concept of understanding a disease. 

So, modern therapies should not be focused on treating symptoms, but they should interfere 

the disorders of implied gene or group of genes. Studies have revealed that those genes 

associated with a certain disease show the tendency to cluster in the same network 

neighborhood (disease module), forming a connected subnetwork inside the interactome 

which contains a large amount of the disease proteins. New biological active molecules have 

to be targeted towards proteins inside or in immediate proximity to the corresponding disease 

module. For this, it is necessary to integrate protein-protein interaction, drug-disease 

association and drug-target association in order to assess the topological properties of drug 

targets taking into account the disease proteins [54]. 

There is the possibility that two disease modules overlap: local changes that cause one 

disease may interfere and disrupt other disease module, with mixed clinical and 

pathobiological characteristics. In this particular case, overlapping disease modules show 

important and significant molecular similarity, increased co-expression of the associated 

genes, and similar clinical expression and comorbidities [55]. 
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Considering that human diseases/disorders are consequence of disturbances in highly 

interlinked cellular networks, they might be in a quite increased manner interconnected. This 

led to development of global disease network maps which associate disease phenotypes if 

there is found a degree of similarity between them at molecular or phenotypic level. Using the 

OMIM (Online Mendelian Inheritance in Man) database, such a map was developed: nodes 

are diseases and two diseases are linked by an edge only if there is at least one common gene 

where mutations associated to them are described. So, it was established that more than 500 

human genetic disorders are connected to a single main giant component, suggesting that 

between human disorders can be described significant connections [56]. 

4. CONCLUSION 

Networks are a modern concept with large applicability in real life. Theory of networks 

helps us understand a large variety of aspects, from social relations, “virtual” social networks, 

Internet, World-Wide Web, to the most complex biological processes which allow to 

understand the mechanisms of diseases and to elaborate novel therapy strategies, up to the 

supreme concept of personalized medicine. In our days where mobility of people is a 

defining, also business is often extended at global scale, thus, internationalizing firms can be 

handled as networks, being more effective in their strategies as new-entries, but also 

improving their evolution and development [57]. 
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